Enhancing Diagnostic Accuracy of Transformer Faults Using Teaching-Learning-Based Optimization

نویسندگان

چکیده

The early detection of the transformer faults with high accuracy rates guarantees continuous operation power system networks. Dissolved gas analysis (DGA) is a technique that used to detect or diagnose based on dissolved gases due electrical and thermal stresses influencing insulating oil. Many attempts are accomplished discover an appropriate correctly fault types, such as Duval Triangle method, Rogers' ratios IEC standard 60599. In addition, several artificial intelligence, classification, optimization techniques merged previous methods enhance their diagnostic accuracy. this article, novel approach proposed introducing new concentration percentages limits gases' help separate conflict between diverse faults. To do so, model established which simultaneously optimizes both so maximize agreement respect actual ones achieving Accordingly, efficient teaching-learning (TLBO) developed accurately solve considering training datasets (Egyptian chemical laboratory literature). TLBO algorithm enhances at significant level, higher than some other DGA were presented in literature. robustness optimization-based confirmed against uncertainty measurement where its not affected by rates. prove efficacy approach, it compared five existing approaches using out-of-sample dataset superior rate reached for different types.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIZE AND GEOMETRY OPTIMIZATION OF TRUSSES USING TEACHING-LEARNING-BASED OPTIMIZATION

A novel optimization algorithm named teaching-learning-based optimization (TLBO) algorithm and its implementation procedure were presented in this paper. TLBO is a meta-heuristic method, which simulates the phenomenon in classes. TLBO has two phases: teacher phase and learner phase. Students learn from teachers in teacher phases and obtain knowledge by mutual learning in learner phase. The suit...

متن کامل

Automatic Clustering Using Teaching Learning Based Optimization

Finding the optimal number of clusters has remained to be a challenging problem in data mining research community. Several approaches have been suggested which include evolutionary computation techniques like genetic algorithm, particle swarm optimization, differential evolution etc. for addressing this issue. Many variants of the hybridization of these approaches also have been tried by resear...

متن کامل

the effect of lexically based language teaching (lblt) on vocabulary learning among iranian pre-university students

هدف پژوهش حاضر بررسی تاثیر روش تدریس واژگانی (واژه-محور) بر یادگیری لغات در بین دانش آموزان دوره پیش دانشگاهی است. بدین منظور دو گروه از دانش آموزان دوره پیش دانشگاهی (شصت نفر) که در سال تحصیلی 1389 در شهرستان نور آباد استان لرستان مشغول به تحصیل بودند انتخاب شده و به صورت قراردادی گروه آزمایش و گواه در نظر گرفته شدند. در ابتدا به منظور اطمینان یافتن از میزان همگن بودن دو گروه از دانش واژگان، آ...

15 صفحه اول

Operation Sequencing Optimization in CAPP Using Hybrid Teaching-Learning Based Optimization (HTLBO)

Computer-aided process planning (CAPP) is an essential component in linking computer-aided design (CAD) and computer-aided manufacturing (CAM). Operation sequencing in CAPP is an essential activity. Each sequence of production operations which is produced in a process plan cannot be the best possible sequence every time in a changing production environment. As the complexity of the product incr...

متن کامل

Classification of Transformer Faults Using Wavelet Based Entropy

This paper presents Wavelet based approach for power transformer faults classification. Wavelet transform is applied to extract the features from the raw signal. An entropy based method is proposed to classify the faults. This entropy based method reduces the size of the input features without losing the characteristics of the signal. The data required to develop the algorithm are generated by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2021.3060288